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PRESSURE GENERATION DURING THE DRYING 
OF A POROUS HALF-SPACE 

M. CROSS,* R. D. GIBSON~ and R. W. Yomct 

(Receiued 11 Nouember 1977 and 

simple model of the drying of a porous media is considered. An analytic solution for the 
drying of a porous half-space is presented and maximum pressures are calculated. 

NOMENCLATURE 

k permeability; 
K thermal conductivity; 

L, latent heat; 
P(x, t), pressure ; 
P A’ atmospheric pressure; 
R 09 gas constant ; 
4 time ; 
T(x, t ), temperature ; 

TEI evaporation temperature; 

r,, outside temperature; 

r,* initial temperature; 
V(x, t), velocity ; 
X, coordinate ; 
X(r), position of evaporation front. 

Greek symbols 

p(x,t), moisture density; 

Pw* density of water; 

K, thermal diffusivity; 

99 porosity ; 
0, dimensionless temperature; 

b*E, 
similarity variable ; 

_ dimensionless parameters. 
a, V,Y, I 

I. INTRODUCIlON 

A COMPREHENSIVE mathematical description of the 
drying of porous media has been developed by 
Luikov (cf. [l] a recent review). The system, which 
consists of a number of parabolic partial differential 
equations which describe the temperature, moisture 
and pressure distributions, is very complex. In fact to 
employ the full Luikov system a large number of 
parameters are required, and in practice, this is not 
often possible to achieve. Thus, more recently 
workers [2-63 have been looking at restricted classes 
of the system. Essentially, this restriction has in- 
volved the assumption that the pressure does not 
significantly influence the temperature or moisture 
distribution during drying. 
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The system of equations describing the processes 
of simultaneous heat and mass transfer only has been 
examined in detail by Gupta [2], Cho [3,4] and 
Mikhailov [5]. Gupta [2] considered a further 
restricted case ignoring the Soret effect (i.e. assuming 
the Posnov number is small which is equivalent to 
neglecting the moisture diffusion due to temperature 
variation). His approach involved the introduction 
of a moving evaporation front which was then 
tracked numerically through a half-space. Cho [3] 
subsequently developed an analytic solution to this 
problem and more recently both he [4] and 
Mikhailov [5] have produced solutions when the 
Soret effect is included. 

The problem to be described here is not so much 
concerned with the simultaneous heat and mass 
transfer as with the pressures generated during the 
drying of a porous medium. This work was stimu- 
lated by a study of iron ore pellets during their 
drying [6]. Before drying commences the pellets 
consist of a large number of small partictes bonded 
together by a variety of mechanisms [7], plus a 
relatively high proportion of voids (-307;) satu- 
rated with moisture. On economic grounds it is 
highly desirable to complete the drying process as 
quickly as possible. However, if the drying rate is too 
fast high pressure gradients may be generated within 
the pellets which may cause them to break up-a 
highly uneconomic feature of operation. In an 
attempt to identify the factors which are most likely 
to affect the pressures generated during drying, a 
simple mathematical description was formulated [6]. 
The resulting system of equations had no analytic 
solution. Hence, in order to lend credence to the 
computed results an analytic solution to a simpler 
problem was developed. 

In this paper, the solution to that simplified 
problem is described ; that is, an analytic solution for 
the pressure generated during the drying of a porous 
half space is developed. It is probably worth noting 
at this stage that the approach to the calculation of 
the pressure distribution is somewhat simplified 
when compared to that of Luikov [I]. However, the 
main advantage of this method is that it requires 
very few parameters (by comparison to Luikov) and 
produces results which appear to be realistic [6]. 

.- 
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2. THE MATHEMATICAL ANALYSIS 

Basically, the analysis presented here attempts to 
provide an approximate description of the following 
aspects of the drying process: (i) the conduction of 
heat through the medium ; (ii) the evaporation of 
moisture within the medium; and (iii) the pressure 
generated by the flow of moisture vapour through 
the medium. 

These equations really form a simplified version of 
Cho’s analysis [3], representing a very simple Stefan 
problem. This particular problem has a Neumann 
type solution [8] 

2.1. Assumptions 
In the analysis of the iron ore pellet it has been 

experimentally validated that the drying rate was 
high compared to the rate of moisture diffusion [6]. 
This is the main assumption again utilised in the 
analysis described here. Thus, in the formulation of 
the analysis the following assumptions are implicit: 
(i) the temperature and moisture distributions are 
independent of pressure; (ii) heat flows by con- 
duction only through the medium; (iii) the half-space 
is effectively divided into two regions (a) containing 
moisture only (at a constant level), and (b) contain- 
ing moisture vapour only diffusing out; (iv) the 
vapour does not take part in the heat-transfer 
process ; (v) the vapour flow is determined by the 
Darcy and ideal gas laws, and the temperature of the 
vapour is the associated solid temperature; (vi) the 
basic interaction between the pressure and the 
temperature and moisture is via the vapour gene- 
ration at the moving front. 

2.2. Evaluation of the temperature and moisture 
distributions 

A semi-infinite porous slab (x > 0) porosity 4, 
initial temperature T, and saturated with moisture 
throughout is considered. The temperature, T(x, t), is 
governed by the equation 

aT a2T 0 < x < X(t) 
at=xax’ x(t) < x < co (1) 

subject to the boundary conditions 

T(0, t) = T, 

T[X(t), tl = TE 

(W 

(2b) 

T(x, 0) = T, for all x (2c) 

where X(t) is the position of the evaporation front at 
time t, T, is the outside temperature, TE is the 
evaporation temperature (T, < TE < T,) and K is the 
thermal diffusivity. For the sake of simplicity K is 
assumed to take the same value in both regions 
although the analysis could be extended to take 
account of varying thermal properties (see, for 
example, Cho [4]). 

Across the evaporation front the heat and mass 
balance gives 

where p,,, is the moisture density, L is the latent heat, 
K 1,2 are the thermal conductivities of the porous 
medium in its dry and saturated state respectively 
and I#I is the material porosity. 

T(x, t) = T, - K - T&WI) (4) 

with the position of the evaporation front being 
given by 

x(t) = 2A(Kt)1’2. (5) 

In the above equations 

X 

’ = 2(Kt)1’2 

i 

$g (rl< 1) 
wl) = 

P--V- l)Z 
(7) 

(rl > 2) 

D= T-T, 
T-T, 

and L is the solution of the transcendental equation 

1 

(9 1 

where 

K,(T,- TE) 
’ = &+K ’ 

(10) 

Equations (4)-(10) define the simultaneous heat- and 
mass-transfer drying process under the assumptions 
described in Section 2.1. Equation (4) describes the 
temperature distribution ; the moisture distribution is 
a simple step function with the step defined by 
equation (5). A table of solutions of equation (9) is 
given in Carslaw and Jaeger [8]. 

2.3. Evaluation of the pressure distribution 
The gas flow velocity, V(x, t) and pressure, P(x, t) 

may be related by Darcy’s law [91 

v=-=- O<x<X(t) 
P ax (11) 

and the continuity equation 

&4 = -4% 
where k is the medium permeability, p is the viscosity 
and p is the moisture density. Equation (12) includes 
pressure by virtue of the ideal gas law 

P = pR,T (13) 

where R, is the gas constant for water vapour. 
On eliminating v from equations (11) and (12) the 

pressure in the dry part of the slab [0 < x c X(t)] is 
governed by 

(14) 

subject to the boundary conditions 

P=P, at x=0 (15) 
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(where P, is the atmospheric pressure) and 
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p_,X=@g at x=X(t) 
p ax 

(16) 

which arises as a consequence of continuity at the 
moving front. 

By non-dimensionalising and introducing the 
similarity variable, q, the equations (14t(16) reduce 
to a set of ordinary non-linear differential equations, 
i.e. 

(17) 

with 

and 

p=l at q=O (18) 

Az=av at q=I2 (19) 

where 

P = AC1 -WI)] 
P = PIP.4 

A = P&I UP, 

(204 
W’b) 

(2~) 

a=&!! 
kf’, 

(204 

and 

7 = K,--WT, POeI 

Gw 

By assuming that CI is small [e.g. for iron ore pellets 
CI N 0(10-5)], equations (17) and (19) reduce to 

A*=ivforallO<q<1. 
drl 

(21) 

This integrates exactly to give 

pz = 1+2J.v{v-&[tierf(v) 
-&(1-e-q*) 11 . (22) 

Examination of equation (22) shows that the 
maximum pressure, pmax will always occur at the 
evaporation front (i.e. where q = 1). A typical set of 
results is shown in Fig. 1 where the (dimensionless) 
maximum pressure is plotted against v for various 
values of E. Since both v and E are proportional to 
the ambient temperature, E is inversely proportional 
to the material porosity, and v is inversely pro- 
portional to the permeability, the results indicate 
that the maximum generated pressure increases with 
the ambient temperature and decreases with material 
porosity or permeability. 

For many situations of practical importance E is 
small (see, for example, [6], or in the drying of 
refactory shapes where To - TE N T, N 20°C). In such 
cases equation (9) may be simplified to E = 21’, in 

FIG. 1. 

which case, we may approximate the maximum 
generated pressure by 

p’max=l+ R,(T,Z - G%K, 
q5LP;k 

=1+:(2-y). 

(23) 

The dashed line Fig. 1 shows the comparison of the 
approximate formulation to the exact result for E 
= 0.1. Equation (23) thus provides a simple useful 
equation to describe the maximum generated pres- 
sure which, by virtue of substitutions from equa- 
tions (S), (9), (10) and (20), includes the effects of 
variations in: (i) the ambient and initial tempera- 
tures ; (ii) the thermal properties of both the material 
and the fluid; plus (iii) the porosity and permeability 
of the porous medium. Finally, note that equation 
(23) shows explicitly the dependence of the maxi- 
mum generated pressure on both the porosity and 
permeability. 
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GENERATION DE PRESSION PENDANT LE SECHAGE DUN CORPS 
POREUX SEMI-INFINI 

R&m&-On consid&e un modele simple de sbhage dun milieu poreux. On pr&ente une solution 
analytique du s&.zhage dun corps poreux semi-infini et Ies pressions maximales sont calcuhzes. 

DRUCKVERLAUF WAHREND DES TROCKNUNGSVORGANGES EINES 
PORGSEN HALBRAUMES 

Zwnmmenfassung-Ein einfaches Model1 des Trocknungsvorganges eines porosen Mediums wird 
betrachtet. Eine analytische Losung fur das Trocknen eines porijsen Halbraumes wird angegeben, und die 

maximalen Driicke werden berechnet. 

POCT AAB~EH~~ FIPM CYUIKE nOPMCTOI-0 ~OnYOrPAH~~EHHO~O TEJIA 

Attain - Pa~Marp~eTca npocran Mortenb cymxu nopucrbix cpen. fIpencraanea0 arianrrrri- 
gec~oe pememie ,a.aa cytu~u nopwcroro no~yorpaaaqeHaor0 -rena A paccreTaaebi 3uaveaNa MaKcff- 

MaJIbHOfO aaB,seHiiX. 


